Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Juliana Jumal, Jalifah Latip and Bohari M. Yamin*

School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail:
bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.064$
$w R$ factor $=0.152$
Data-to-parameter ratio $=13.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2-(4-Fluoroanilino)-4,5-dimethyl-1,3-thiazole

In the title compound, $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{FN}_{2} \mathrm{~S}$, the dihedral angle between the least-squares planes of the fluoroaniline and 1,3 -thiazole fragments is $46.47(17)^{\circ}$. The molecules form dimers by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. There are no significant $\pi-\pi$ interactions in the crystal structure.

Comment

In a previous study, we found the molecule of 2-anilino-4,5-dimethyl-1,3-thiazole, (II), to be essentially planar except for the methyl H atoms (Jumal \& Yamin, 2006). Howewer, compound (I), which has an F atom at the 4-position of the aniline group (Fig. 1), shows a non-planar conformation, with an angle of $46.47(17)^{\circ}$ between the least-squares planes of the fluoroaniline ($\mathrm{F} 1 / \mathrm{C} 1-\mathrm{C} 6 / \mathrm{N} 1$) and 1,3-thiazole (S1/N2/C7-C9) fragments. The maximum deviation from the mean plane of the fluoroaniline fragment is 0.031 (3) \AA for atom N 1 . The bond lengths and angles are in normal ranges (Allen et al., 1987).

(I)

In the crystal structure, the molecules are linked by N $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 2), forming dimers, as observed in (II), and are stacked parallel to the b axis without significant $\pi-\pi$ interactions (Fig. 2).

It seems that the driving force for the non-planar conformation of (I) is the intramolecular $\mathrm{H} 1 B \cdots \mathrm{~S} 1$ short contact of $2.72 \AA$ (Table 2), which is nearly the sum of the van der Waals radii of H (aromatic) and S atoms ($2.80 \AA$ A Bondi, 1964). The corresponding $\mathrm{H} \cdots \mathrm{S}$ distance in (II) is $2.49 \AA$, suggesting intramolecular strain which may be compensated by the intermolecular $\pi-\pi$ interactions (Jumal \& Yamin, 2006).

Experimental

A solution of 4-fluoroaniline ($2.20 \mathrm{~g}, 0.02 \mathrm{~mol}$) in acetone (40 ml) was added dropwise to an acetone solution (40 ml) containing equimolar amounts of 3-chloro-2-butanone ($2.14 \mathrm{~g}, 0.02 \mathrm{~mol}$) and ammonium thiocyanate $(1.52 \mathrm{~g}, 0.02 \mathrm{~mol})$ in a two-necked round-bottomed flask. The mixture was refluxed for 3 h . The resulting solution was poured into a beaker containing ice cubes. The white precipitate was filtered off, washed with distilled water and ethanol, and then dried.

Recrystallization from acetone yielded crystals of (I) ($3.1 \mathrm{~g}, 70 \%$) suitable for X-ray analysis.

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{FN}_{2} \mathrm{~S}$
 $M_{r}=222.28$
 Monoclinic, $P 2_{\mathrm{a}} / \mathrm{c}$
 $a=11.915$ (5) \AA 。
 $b=4.0811$ (17) \AA
 $c=22.546$ (9) A
 $\beta=100.151$ (7) ${ }^{\circ}$
 $V=1079.2(8) \AA^{3}$
 Data collection

Bruker SMART APEX CCD areadetector diffractometer
ω scan
Absorption correction: multi-scan
$S A D A B S$ (Bruker, 2000)
$T_{\text {min }}=0.872, T_{\text {max }}=0.975$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.064$
$w R\left(F^{2}\right)=0.152$
$S=1.14$
1887 reflections
138 parameters
H -atom parameters constrained

Table 1
Selected torsion angles (${ }^{\circ}$).

$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 1$	$41.3(5)$	$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 7-\mathrm{S} 1$	$9.0(5)$

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{~S} 1$	0.93	2.72	$3.124(4)$	107
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.86	2.18	$3.038(4)$	172

Symmetry code: (i) $-x,-y+1,-z+1$.

After their location in difference maps, all H -atoms were positioned geometrically and allowed to ride on their parent atoms with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ or $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl groups.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Figure 1
Molecular structure of (I), with 50% probability displacement ellipsoids. The dashed line indicates a hydrogen bond.

Figure 2
Packing diagram of (I), viewed down the b axis. H atoms have been omitted unless they are involved in hydrogen bonds (dashed lines).

The authors thank the Malaysian Government and Universiti Kebangsaan Malaysia for research grant IRPA No. 09-02-02-0163. One of the authors (JJ) also thanks the Kolej Universiti Islam Malaysia for part-time study leave.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bondi, A. (1964). J. Phys. Chem. 68, 443-451.
Bruker (2000). SADABS (Version 2.01), SMART (Version 5.630a) and SAINT (6.63a). Bruker AXS Inc., Madison, Wisconsin, USA.

Jumal, J. \& Yamin, B. M. (2006). Acta Cryst. E62, o2893-o2894.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version V5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

